学术报告-王阳

发布人:
责任人:
点击数:
更新时间:
2021-12-17 08:40:00


学术报告


题      目:  Multipoint stress mixed finite element methods for linear viscoelasticity with weak symmetry


报  告  人:王阳   博士  (邀请人:冷海涛 )

                                   阿卜杜拉国王科技大学(KAUST)


时      间:2021-12-17  14:00-15:00


腾讯会议:826 518 832


报告人简介:

       王阳,男,2019年从湘潭大学博士毕业,现在阿卜杜拉国王科技大学(KAUST)
做博士后。主要从事裂隙多孔介质问题、特征值问题、混合有限元方法、扩展有限元方法
等的研究。已在JSC、Appl. Numer. Math.等计算数学核心期刊发表论文多篇。

摘      要:

       In this talk, we propose two Multipoint Stress Mixed Finite Element (MSMFE)
methods for linear viscoelasticity with weak symmetry on quadrilateral grids. The
methods are constructed based on the lowest order Brezzi-Douglas-Marini mixed finite element spaces for elastic and viscous stress, piecewise constant velocity and
piecewise constant (or linear) vorticity. A special quadrature rule is applied for
local stress and vorticity elimination. This results in a positive definite cell centered velocity-vorticity or only velocity system at each time step. Unconditional
energy-dissipation of the MSMFE methods is proved rigorously. The accuracy of all
the numerical solutions in their nature norms are established to be first order space convergence, both for the semi-discrete and fully-discrete formulations. Numerical results validate the effectiveness and locking-free property of the proposed methods.












会员BET9登陆|BET9登录入口